Peptidergic activation of locomotor pattern generators in the neonatal spinal cord.

نویسندگان

  • Selina A Pearson
  • Abdeslam Mouihate
  • Quentin J Pittman
  • Patrick J Whelan
چکیده

The development of motor networks in the spinal cord is partly activity-dependent. We have observed receptor-mediated excitatory effects of two peptides, arginine vasopressin (AVP) and oxytocin (OXT), on motor network activity in the neonate. With the use of an en bloc in vitro preparation of mouse spinal cord (2-3 d old), which either was isolated completely or had muscles of the hindlimb left intact, we show that the bath application of AVP or OXT can evoke an increase in population bursting of motoneurons recorded from the lumbar ventral roots. By using antagonists for AVP and OXT, we found that these peptides were binding primarily to V1a and OXT receptors, respectively. Western blot analysis revealed a 48 kDa V1a and a 55 kDa OXT receptor immunoreactive band that was expressed in tissue obtained from L1-L6 sections of spinal cord. AVP, but not OXT, could, on occasion, evoke sustained periods of locomotor-like activity. In addition, when we applied AVP or OXT in combination with a 5-HT2 agonist, bouts of locomotor-like activity could be observed in a majority of preparations. Collectively, these data point to a novel role for AVP and OXT in the activation of spinal motor networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neonatal Circuits

Rhythmic patterns of coordinated movement are produced by networks of spinal neurons known as ‘central pattern generators’ (CPGs). These circuits have been studied using isolated spinal cord preparations that can generate a pattern of motor discharge that resembles locomotion (locomotor-like activity). The isolated spinal cord is more experimentally accessible than the equivalent in vivo prepar...

متن کامل

Reversible disorganization of the locomotor pattern after neonatal spinal cord transection in the rat.

The central pattern generators (CPGs) for locomotion, located in the lumbar spinal cord, are functional at birth in the rat. Their maturation occurs during the last few days preceding birth, a period during which the first projections from the brainstem start to reach the lumbar enlargement of the spinal cord. The goal of the present study was to investigate the effect of suppressing inputs fro...

متن کامل

Glial-derived adenosine modulates spinal motor networks in mice

The activation of purinergic receptors modulates central pattern generators controlling rhythmic motor behaviors, including respiration in rodents and swimming in frog tadpoles. The present study aimed to determine whether purinergic signaling also modulates the mammalian locomotor central pattern generator. This was investigated by using isolated spinal cord preparations obtained from neonatal...

متن کامل

Serotonergic modulation of post-synaptic inhibition and locomotor alternating pattern in the spinal cord

The central pattern generators (CPGs) for locomotion, located in the lumbar spinal cord, are functional at birth in the rat. Their maturation occurs during the last few days preceding birth, a period during which the first projections from the brainstem start to reach the lumbar enlargement of the spinal cord. Locomotor burst activity in the mature intact spinal cord alternates between flexor a...

متن کامل

The role of genetically-defined interneurons in generating the mammalian locomotor rhythm.

Locomotor behavior in mammals requires a complex pattern of muscle activation. Neural networks, known as central pattern generators (CPGs) and located entirely within the spinal cord, are responsible for generating much of the timing and pattern required for locomotor movements. Historically, identification of interneuronal components of the locomotor CPG in walking mammals has proven troubleso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 31  شماره 

صفحات  -

تاریخ انتشار 2003